
www.anl.gov

Effective Use of Python on Theta

William Scullin
Assistant Computational Scientist
Leadership Computing Facility
Argonne National Laboratory

ALCF Early Science Program Training Series
December 5, 2018

Argonne Leadership Computing Facility2

“People are doing high performance
computing with Python... how do we
stop them?”

- Senior Performance Engineer

Argonne Leadership Computing Facility3

What are we covering?
• Why Python?
• Choosing a Python and Environments
• Performance Basics
• NumPy
• Hands-on 1: Setup an environment
• General parallelism
• mpi4py usage
• Job submission with aprun
• Hands-on 2: Run a parallel job
• Installing and building Python modules
• Hands-on 3: Installing h5py

Argonne Leadership Computing Facility4

Why Python?
• If you like a programming paradigm, it’s supported
• Most functions map to what you know already
• Easy to combine with other languages
• Easy to keep code readable and maintainable
• Lets you do just about anything without changing languages
• The price is right - no license management
• Code portability
• Fully Open Source
• Very low learning curve
• Commercial support options are available
• Comes with a highly enthusiastic and helpful community

Argonne Leadership Computing Facility5

Why Not Python?
• Performance is often a secondary concern for developers and distributions

• Most developers aren’t in HPC environments
• Most developers aren’t in science environments

• Many tools were designed to work best in generic environments
• Language maintainers favor consistency over compatibility
• Backwards compatibility is seldom guaranteed
• Low learning curve
• It’s easy to develop a code base that works, but won’t scale

Argonne Leadership Computing Facility6

Python 2 or 3? In general, use Python 3.

• Python 3 is the future – and the future is here
• All major libraries now work under Python 3.5+
• Almost all popular tools work with Python 3.5+
• Python 3’s loader and more of the interpreter’s internals are written in Python

which does make it slower in distributed environments
• Python 2 development has effectively stopped

Argonne Leadership Computing Facility7

Python at ALCF
• Every system we run is a cross-compile environment except Cooley

• pip/distutils/setuptools/anaconda don’t play well with cross-compiling
• Blue Gene/Q Python is manually maintained:

• Instructions on use are available in: /soft/cobalt/examples/python
• Modules built on request, but BG/Q is end-of-life

• X86_64 offers us a lot more options:
• Miniconda
• Intel Python - managed and used via Conda
• ALCF Python managed via Spack and loadable via modules
• Bring your own Python

• We prefer users to install their own environments
• Users will need to set up their environment to use the Cray MPICH compatibility

ABI and strictly build with the Intel MPI wrappers:
http://docs.cray.com/books/S-2544-704/S-2544-704.pdf

http://docs.cray.com/books/S-2544-704/S-2544-704.pdf

Argonne Leadership Computing Facility8

Python at ALCF

8

• Conda-based options:
• Theta Miniconda
module avail 2>&1 | grep miniconda
miniconda-2.7/conda-4.4.10
miniconda-2.7/conda-4.4.10-h5py-parallel
miniconda-2.7/conda-4.4.10-login
miniconda-2.7/conda-4.5.4
miniconda-2.7/conda-4.5.4-login
miniconda-3.6/conda-4.4.10
miniconda-3.6/conda-4.4.10-login
miniconda-3.6/conda-4.5.4
miniconda-3.6/conda-4.5.4-login

• Intel Python - managed and used via Conda
• Anaconda

Argonne Leadership Computing Facility9

Python at ALCF

9

• Built-from-source Python

• ALCF Python managed via Spack and loadable via modules:

module load alcfpython/2.7.14-20180131
• A module that loads modules for NumPy, SciPy, MKL, h5py, mpi4py...

• Built via Spack to emphasize performance, reproducibility, and Cray

compatibility

• Use of virtualenv is recommended - do not mix conda and virtualenv!

• We’ll build any package with a Spack spec on request

Argonne Leadership Computing Facility10

Python at ALCF: How to choose?

10

• We’re out to enable you to work in a way that’s comfortable for you
• If you’re using Anaconda, use Anaconda

o we recommend cloning local miniconda and then the Intel channels
o It’s easy to clobber a working environment
o Be cognizant the Cray MPI requires some manipulation of your envs

• If you’re new, VirtualEnv is standard outside of the data science
community
o Not as reproducible or sharable in science contexts
o Universally supported
o Easy to generate a non-performant build

Argonne Leadership Computing Facility11

Where do We want to spend our time?

11

Share of execution tim
e

Argonne Leadership Computing Facility12

How does CPython work?

Argonne Leadership Computing Facility13

How does CPython work?

Argonne Leadership Computing Facility14

How does CPython work?

Argonne Leadership Computing Facility15

Threads and CPython: A Word on the GIL
To keep memory coherent, Python only allows a single thread to run in the
interpreter's memory space at once. This is enforced by the Global Interpreter
Lock, or GIL.

The GIL isn’t all bad. It:
• Is mostly sidestepped for I/O (files and sockets)
• Makes writing modules in C much easier
• Makes maintaining the interpreter much easier
• Makes for any easy topic of conversation
• Encourages the development of other paradigms for parallelism
• Is almost entirely irrelevant in the HPC space as it neither impacts MPI or

threading within compiled modules

For the gory details, see David Beazley's talk on the
GIL: https://www.youtube.com/watch?v=fwzPF2JLoeU

Argonne Leadership Computing Facility16

Takeaways on CPython
• CPython is a Read–Eval–Print Loop (REPL) environment.

• There is no look-ahead to enable optimizations.

• There is no automatic parallelism.

• Everything is evaluated piece-wise and sequentially.

• CPython was written for safety and ease of maintenance, not performance:

o Russell Power and Alex Rubinsteyn wrote in their paper “How fast can we

make interpreted Python?”:

“In the general absence of type information, almost every instruction must be

treated as INVOKE_ARBITRARY_METHOD.”

• While you can improve pure Python performance through language features

running in CPython, it won’t deliver the efficiency of compiled code.

16

http://arxiv.org/pdf/1306.6047v2.pdf

Argonne Leadership Computing Facility17

Numpy and Scipy
NumPy - your first stop for performance improvement. It provides:

• N-dimensional homogeneous arrays (ndarray)
• Universal functions (ufunc)
• built-in linear algebra, FFT, PRNGs
• Tools for integrating with C/C++/Fortran
• Heavy lifting done by optimized C/Fortran libraries such as Intel’s MKL or IBM’s ESSL

SciPy extends NumPy with common scientific computing tools
• optimization
• additional linear algebra
• integration
• interpolation
• FFT
• signal and image processing
• ODE solvers

Problems arise when NumPy isn’t well built… and its configuration is used for most
other scientific modules

Argonne Leadership Computing Facility18

Checking your NumPy Configuration:
Check your configuration for the use of optimized libraries:
>>> import numpy as np
>>> np.__config__.show()

NumPy’s distutils can give insight into compilers and options used:
>>> import numpy
>>> import numpy.distutils
>>> np_config_vars = numpy.distutils.unixccompiler.sysconfig.get_config_vars()
>>> # np_config_vars is a dict with configuration values
>>> import pprint
>>> # pprint is a pretty printer and not required, just recommended
>>> pprint.pprint(np_config_vars)
{'AC_APPLE_UNIVERSAL_BUILD': 0,
'AIX_GENUINE_CPLUSPLUS': 0,
'AR': 'ar',
'ARCH': 'x86_64',
'ARFLAGS': 'rc',
...

Argonne Leadership Computing Facility19

NumPy and SciPy
Optimized and built with MKL via Spack Installed via pip

The test on a KNL system:
>>> import timeit
>>> sum([timeit.timeit('import numpy as np; np.random.random((100,100))*np.random.random((100))') for i in range(100)])/100.0

119.68859601020813s 499.9269280433655s

Argonne Leadership Computing Facility20

NumPy Data Types
NumPy covers all the same numeric data types available in C/C++ and Fortran as

variants of int, float, and complex:

• all available signed and unsigned as applicable

• available in standard lengths

• floats are double precision by default

• generally available with names similar to C or Fortran

-- ie: long double is longdouble
• generally compatible with Python data types

• follow endianness of the platform – conversion routines are offered

• longdouble follows the compiler / platform’s definition of long double

NumPy also offers the ability to create structured datatypes.

If it can be done in C/C++/Fortran, it can be done in NumPy.

Argonne Leadership Computing Facility21

Creating NumPy Arrays
Initialize with Python lists: array with 2 rows, 4 cols
>>> import numpy as np
>>> np.array([[1,2,3,4],[8,7,6,5]])
array([[1, 2, 3, 4],

[8, 7, 6, 5]])

Make an array of n (10) evenly spaced numbers over an interval
inclusive of start (1) and stop (100)
>>> np.linspace(1,100,10)
array([1., 12., 23., 34., 45., 56., 67., 78., 89., 100.])

Create an array and pre-populate with zeros with 2 rows, 5 cols
>>> np.zeros((2,5))
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.]])

Argonne Leadership Computing Facility22

Slicing NumPy Arrays (Part 1)
>>> a = np.array([[1,2,3,4],[9,8,7,6],[1,6,5,4]])
>>> a
array([[1, 2, 3, 4],

[9, 8, 7, 6],
[1, 6, 5, 4]])

>>> arow = a[0,:] # get slice referencing row zero
>>> arow
array([1, 2, 3, 4])

>>> cols = a[:,[0,2]] # get slice referencing columns 0 and 2
>>> cols
array([[1, 3],

[9, 7],
[1, 5]])

Argonne Leadership Computing Facility23

Slicing NumPy Arrays (Part 2)
NOTE: arow & cols are NOT copies, they point to the original data
>>> arow
array([1, 2, 3, 4])
>>> arow[:] = 0
>>> arow
array([0, 0, 0, 0])

>>> a
array([[0, 0, 0, 0],

[9, 8, 7, 6],
[1, 6, 5, 4]])

Explicitly copy data
>>> copyrow = arow.copy()

Argonne Leadership Computing Facility24

Creating NumPy Arrays
Make a 2d n x n (4 x 4) array of 1s
>>> b = np.ones((4,4))
>>> b
array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

>>> b.ndim
2

>>> b.dtype
dtype('float64’)

>>> b.shape
(4, 4)

Argonne Leadership Computing Facility25

Creating NumPy Arrays
Make a 2d n x n (4 x 4) identity array
>>> c = np.eye(4)
>>> c
array([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

Make a 2d n x n (4 x 4) from a function
>>> def f(x,y): return (1/(x+1))*y
...
>>> d = np.fromfunction(f,(4,4))
>>> d
array([[0. , 1. , 2. , 3.],

[0. , 0.5 , 1. , 1.5],
[0. , 0.33333333, 0.66666667, 1.],
[0. , 0.25 , 0.5 , 0.75]])

Argonne Leadership Computing Facility26

Broadcasting with universal functions (ufuncs)
Applies operations to many elements with a single call – with compiled code
>>> a = np.array(([1,2,3,4],[8,7,6,5]))
>>> a
array([[1, 2, 3, 4],

[8, 7, 6, 5]])
Rule 1: Dimensions of one may be prepended to either array to match the array with the greatest number of
dimensions
>>> a + 1 # add 1 to each element in array
array([[2, 3, 4, 5],

[9, 8, 7, 6]])

Rule 2: Arrays may be repeated along dimensions of length 1 to match the size of a larger array
>>> a + np.array(([1],[10])) # add 1 to 1st row, 10 to 2nd row
array([[2, 3, 4, 5],

[18, 17, 16, 15]])
>>> a**([2],[3]) # raise 1st row to power 2, 2nd to 3
array([[1, 4, 9, 16],

[512, 343, 216, 125]])

Argonne Leadership Computing Facility27

Broadcasting with universal functions (ufuncs)
Beware of matrix versus array syntax
>>> c*d
array([[0. , 0. , 0. , 0.],

[0. , 0.5 , 0. , 0.],
[0. , 0. , 0.66666667, 0.],
[0. , 0. , 0. , 0.75]])

>>> c@d
array([[0. , 1. , 2. , 3.],

[0. , 0.5 , 1. , 1.5],
[0. , 0.33333333, 0.66666667, 1.],
[0. , 0.25 , 0.5 , 0.75]])

>>> c.dot(d) # Equivalent to @ operator for 2d arrays
array([[0. , 1. , 2. , 3.],

[0. , 0.5 , 1. , 1.5],
[0. , 0.33333333, 0.66666667, 1.],
[0. , 0.25 , 0.5 , 0.75]])

>>> np.matmul(c,d) # Different rules from np.dot
array([[0. , 1. , 2. , 3.],

[0. , 0.5 , 1. , 1.5],
[0. , 0.33333333, 0.66666667, 1.],
[0. , 0.25 , 0.5 , 0.75]])

Argonne Leadership Computing Facility28

Using NumPy appropriately pays off
>>> import timeit
>>> import numpy as np
>>> A = np.linspace(-10,10,100).reshape(10,10)
>>> B = np.linspace(-1.0,1.0,100).reshape(10,10)
>>>
>>> def mat_mult(A,B):
... """ We're assuming regular 2D NumPy matrixes with dimensions such that
... A.shape[1] == B.shape[0]"""
... assert A.shape[1] == B.shape[0], "A[1].shape != B[0].shape"
... C=np.zeros((A.shape[0],B.shape[1]))
... for i in range(A.shape[0]):
... for j in range(A.shape[1]):
... for k in range(B.shape[1]):
... C[i,j] += A[i,k]*B[k,j]
... return C
...
...
>>> if __name__ == '__main__':
... setup_str = "from __main__ import A,B,mat_mult; import numpy as np"
... cnt = 100000
... manual_time = timeit.timeit("mat_mult(A,B)", number=cnt, setup=setup_str)
... numpy_time = timeit.timeit("np.matmul(A,B)", number=cnt, setup=setup_str)
... print("Manual Matmul x%d: %24.6fs" %(cnt, manual_time))
... print("NumPy Matmul x%d: %24.6fs" %(cnt, numpy_time))
...

Manual Matmul x100000: 409.429088s
NumPy Matmul x100000: 1.660264s

Argonne Leadership Computing Facility29

When NumPy isn’t enough
• Building blocks like NumPy and SciPy are already built with great vectorizations and thread

support via the libraries they link with:
BLAS/LAPACK, MKL, FFTW

• Don’t re-implement solvers in pure Python or even NumPy - many of your favorite libraries and
packages already have Python bindings:

• PyTrilinos
• petsc4py
• Elemental
• SLEPc

• Where bindings for a library aren’t available, it’s often easy to generate them

Argonne Leadership Computing Facility30

Hands-on 1

Notes:

o We have a Theta reservation for use in this training, the

queue is training
o Examples assume exactly 8 nodes unless specified

o Ask questions if you get confused or something breaks

We’ll create a VirtualEnv environment, a Conda env, list

packages, and install a mpi4py.

Please log into Theta now.

Argonne Leadership Computing Facility31

Hands on – follow live - VirtualEnv:
First, create a directory for this training, I used /home/wscullin/esptraining
wscullin@thetalogin5:~> mkdir esptraining
wscullin@thetalogin5:~> cd esptraining

Next, check for a Python in your path - it’s likely the system Python – we don’t recommend using this
wscullin@thetalogin5: ~/esptraining> which python
/usr/bin/python

Load the alcfpython module
wscullin@thetalogin5:~/esptraining> module avail 2>&1 | grep alcfpython
alcfpython/2.7.14-20180131
module load alcfpython/2.7.14-20180131
wscullin@thetalogin5:~/esptraining> which python
/lus/theta-fs0/software/packaging/spack/builds/cray-CNL-mic_knl/intel-18.0.0.128.4.9.4.6.0.4.7.7.0/python-
2.7.14-raulaayvkwjengfs4yk53wmp4nu7y2ls/bin/python

Create a VirtualEnv that builds off the central install
wscullin@thetalogin5:~/esptraining> virtualenv --system-site-packages training_env
New python executable in /gpfs/mira-home/wscullin/esptraining/training_env/bin/python2.7
Also creating executable in /gpfs/mira-home/wscullin/esptraining/training_env/bin/python
Installing setuptools, pip, wheel...done.
(training_env) wscullin@thetalogin5:~/esptraining> which python
/gpfs/mira-home/wscullin/esptraining/training_env/bin/python

Argonne Leadership Computing Facility32

Hands on – follow live - VirtualEnv:
List packages in the training_env VirtualEnv
(training_env) wscullin@thetalogin5:~/esptraining> pip list
Package Version
---------------------------------- -----------
alabaster 0.7.10
...

Check the numpy build location
(training_env) wscullin@thetalogin5:~/esptraining> python
Python 2.7.14 (default, Feb 3 2018, 00:03:51)
[GCC Intel(R) C++ gcc 4.9.4 mode] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> numpy.__file__
'/lus/theta-fs0/software/packaging/spack/builds/cray-CNL-mic_knl/intel-18.0.0.128.4.9.4.6.0.4.7.7.0/py-numpy-
1.13.3-7eg5w35lsvyiqpiqb6yj7ozaib25y2ip/lib/python2.7/site-packages/numpy/__init__.pyc’
>>> exit()

Close things down
(training_env) wscullin@thetalogin5:~/esptraining> deactivate
wscullin@thetalogin5:~/esptraining>
wscullin@thetalogin5:~/esptraining> module unload alcfpython
wscullin@thetalogin5:~/esptraining> which python
/usr/bin/python

Argonne Leadership Computing Facility33

Note on using VirtualEnv
Using your packages with an external interpreter:

• Install your own packages in your virtualenv
• Use them with external python within your python scripts
• Mix-and-match with center-provided packages

Activate automatically in scripts with:
#!/usr/bin/env python2.7
activate_this = '/path/to/env/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

N.B.: Packages installed in your virtualenv will supercede
versions installed at the site level.

Argonne Leadership Computing Facility34

Hands on – follow live - miniconda:
Find the miniconda modules
wscullin@thetalogin5:~/esptraining> module avail miniconda

-------------------------- /soft/environment/modules/modulefiles ---------------------------
miniconda-2.7/conda-4.4.10 miniconda-3.6/conda-4.4.10
miniconda-2.7/conda-4.4.10-h5py-parallel miniconda-3.6/conda-4.4.10-login
miniconda-2.7/conda-4.4.10-login miniconda-3.6/conda-4.5.4
miniconda-2.7/conda-4.5.4 miniconda-3.6/conda-4.5.4-login
miniconda-2.7/conda-4.5.4-login

Load the login version of the module and confirm the python in use
wscullin@thetalogin5:~/esptraining> module load miniconda-2.7/conda-4.5.4
wscullin@thetalogin5:~/ esptraining > which python
/soft/datascience/conda/miniconda2/4.5.4/bin/python

List packages
wscullin@thetalogin5:~/esptraining> conda list
packages in environment at /soft/datascience/conda/miniconda2/4.5.4:
#
Name Version Build Channel
absl-py 0.3.0 py27_0
. . .

Argonne Leadership Computing Facility35

Hands on – follow live:
Create a Conda environment
wscullin@thetalogin5:~/esptraining> conda create -p ./training_conda_env --clone $MINICONDA_INSTALL_PATH
Source: /soft/datascience/conda/miniconda2/4.5.4
Destination: /gpfs/mira-home/wscullin/esptraining/training_conda_env
The following packages cannot be cloned out of the root environment:
- conda-4.5.9-py27_0
- conda-env-2.6.0-h36134e3_1

Packages: 94
Files: 6468
[10 minutes worth of installation messages]

Activate the environment
wscullin@thetalogin5:~/esptraining> source activate training_conda_env
(/gpfs/mira-home/wscullin/esptraining/training_conda_env) wscullin@thetalogin5:~/esptraining>

Verify you’re using your python environment
(/gpfs/mira-home/wscullin/esptraining/training_conda_env) wscullin@thetalogin5:~/esptraining> which python
/gpfs/mira-home/wscullin/esptraining/training_conda_env/bin/python

Close things down
(/gpfs/mira-home/wscullin/esptraining/training_conda_env) wscullin@thetalogin5:~/esptraining> source deactivate
wscullin@thetalogin5:~/esptraining>

Argonne Leadership Computing Facility36

Notes on using Conda
• See https://www.alcf.anl.gov/user-guides/conda for more details
• If you notice that packages installed in your env aren’t being chosen over defaults from

$MINICONDA_INSTALL_PATH you may need to do something like:

PV=$(python -c 'import sys; print("%d.%d" %sys.version_info[0:2])’)
export PYTHONPATH=${CONDA_PREFIX}/lib/python${PV}/site-packages:${PYTHONPATH}

in your shell and scripts

https://www.alcf.anl.gov/user-guides/conda

Argonne Leadership Computing Facility37

Parallelism

Argonne Leadership Computing Facility38

Parallel and Distributed Programming Options
threading

●useful for certain concurrency issues, not really usable for parallel computing due to the GIL
subprocess

● relatively low level control for spawning and managing processes, think popen
multiprocessing - multiple Python instances (processes)

●basic multiple process parallelism through forked interpreters
●Does not mix well with OpenMP, MPI, or shared memory tools

MPI
●mpi4py exposes your full local MPI API within Python
●as scalable as your local MPI

GPU (OpenCL & CUDA)
●PyOpenCL and PyCUDA provide low and high level abstraction for highly parallel computations

on GPUs

Argonne Leadership Computing Facility39

Parallelism Best Practices
• Don’t cross the streams!
• Choose a form of parallelism – maybe two and stick to it! Trouble begins when

you have:

• multiple OpenMP runtimes or pthreads+OpenMP
• multiprocessing (never the correct answer)

• forking
• Watch affinity very carefully on the Cray – numpy and others can link threaded

BLAS and LAPACK leading to more threads than you expect

Argonne Leadership Computing Facility40

Why MPI?
It is (still) the HPC paradigm for inter-process communications

• Supported by every HPC center and vendor on the planet
• APIs are stable, standardized, and portable across platforms and languages
• We’ll still be using it in 10 years…

It makes full use of HPC interconnects and hardware
• Abstracts aspects of the network that may be very system specific
• Dask, Spark, Hadoop, and Protocol Buffers use sockets or files!
• Vendors generally optimize MPI for their hardware and software

Well-supported tools for development – even for Python
• Debuggers now handle mixed language applications
• Profilers are treating Python as a first-class citizen
• Many parallel solver packages have well-developed Python interfaces

Folks have been writing Python MPI bindings since at least 1996
• David Beazley may have started this…
• Other contenders: Pypar (Ole Nielsen), pyMPI (Patrick Miller, et al), Pydusa (Timothy H. Kaiser), and

Boost MPI Python (Andreas Klöckner and Doug Gregor)
• The community has mostly settled on mpi4py by Lisandro Dalcin

Argonne Leadership Computing Facility41

A bottleneck at the start: Loading Python
When working in diskless environments or from shared file systems, keep track of
how much time is spent in startup and module file loading. Parallel file systems are
generally optimized for large, sequential reads and writes. NFS generally serializes
metadata transactions. This load time can have substantial impact on total
runtimes.

Argonne Leadership Computing Facility42

mpi4py

• Pythonic wrapping of the system’s native MPI
• provides almost all MPI-1,2 and common MPI-3 features
• very well maintained
• distributed with major Python distributions
• portable and scalable

• requires only: NumPy, Cython, and an MPI
• used to run a python application on 786,432 cores
• capabilities only limited by the system MPI

• http://mpi4py.readthedocs.io/en/stable/

http://mpi4py.scipy.org/

Argonne Leadership Computing Facility43

How mpi4py works...
• mpi4py jobs are launched like other MPI binaries:

aprun –n ${RANKS} –N ${RANKS_PER_NODE} python ${PATH_TO_SCRIPT}
• an independent Python interpreter launches per rank

• no automatic shared memory, files, or state
• crashing an interpreter does crash the MPI program
• it is possible to embed an interpreter in a C/C++ program and launch an

interpreter that way

Argonne Leadership Computing Facility44

How mpi4py works...
If you have trouble with simple MPI codes, remember:

• CPython is a C binary and mpi4py is a binding
• you will likely get core files and mangled stack traces
• use ld to check which MPI mpi4py is linked against – frequently a non-Cray

MPI gets sucked in
• ensure Python, mpi4py, and your code are available on all nodes and libraries

and paths are correct
• on the Cray, it may be necessary to copy
${CRAY_MPICH_DIR}/lib/
into your environment’s
${CONDA_PREFIX}/lib/

• Failure appears as there only being a single rank

Argonne Leadership Computing Facility45

mpi4py startup and shutdown
• Importing and MPI initialization

• importing mpi4py allows you to set runtime configuration options (e.g. automatic
initialization, thread_level) via mpi4py.rc()

• by default importing the MPI submodule calls MPI_Init()
• calling Init() or Init_thread() more than once violates the MPI

standard
• This will lead to a Python exception or an abort in C/C++
• use Is_initialized() to test for initialization

• MPI_Finalize() will automatically run at interpreter exit
• there is generally no need to ever call Finalize()
• use Is_finalized() to test for finalization if uncertain
• calling Finalize() more than once exits the interpreter with an error and may

crash C/C++/Fortran modules

Argonne Leadership Computing Facility46

mpi4py and program structure
Any code, even if after MPI.Init(), unless reserved to a given rank will run on
all ranks:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()

if rank%2 == 0:
print(“Hello from an even rank: %d” %(rank))

comm.Barrier()

print(“Goodbye from rank %d” %(rank))

Argonne Leadership Computing Facility47

mpi4py and datatypes
• Python objects, unless they conform to a C data type, are pickled

• pickling and unpickling have significant compute overhead
• overhead impacts both senders and receivers
• pickling may also increase the memory size of an object
• use the lowercase methods, eg: recv(),send()

• Picklable Python objects include:
• None, True, and False
• integers, long integers, floating point numbers, complex numbers
• normal and Unicode strings
• tuples, lists, sets, and dictionaries containing only picklable objects
• functions defined at the top level of a module
• built-in functions and classes defined at the top level of a module
• instances of such classes whose __dict__() or the result of

calling __getstate__() is picklable

Argonne Leadership Computing Facility48

mpi4py and datatypes

• Buffers, MPI datatypes, and NumPy objects aren’t pickled
• transmitted near the speed of C/C++
• NumPy datatypes are autoconverted to MPI datatypes
• buffers may need to be described as a 2/3-list/tuple
[data, MPI.DOUBLE] for a single double
[data,count,MPI.INT] for an array of integers

• custom MPI datatypes are still possible
• use the capitalized methods, e.g.: Recv(), Send()

• When in doubt: can it be represented as a memory buffer or only as PyObject?

Argonne Leadership Computing Facility49

mpi4py: collectives and operations

• Collectives operating on Python objects are naïve
• For the most part collective reduction operations on Python objects are serial
• Casing convention applies to methods:

• lowercase methods will work for general Python objects (albeit slowly)
• uppercase methods will work for NumPy/MPI data types at near C speed
• uppercase methods will use optimized vendor collectives

Argonne Leadership Computing Facility50

mpi4py: Parallel I/O
• All 30-something MPI-2 methods are supported
• conventional Python I/O is not MPI safe!

• safe to read files, though there might be locking issues
• write a separate file per rank if you must use Python I/O

• h5py 2.2.0 and later support parallel I/O
• hdf5 must be built with parallel support

• make sure your hdf5 matches your MPI
• h5pcc must be present
• check things with: h5pcc -showconfig
• hdf5 and h5py from Anaconda are serial!

• anything which modifies the structure or metadata of a file must be done
collectively

• Generally as simple as:
f = h5py.File('parallel_test.hdf5', 'w',

driver='mpio', comm=MPI.COMM_WORLD)

Argonne Leadership Computing Facility51

mpi4py: crashing
If you crash:

• Again, remember: CPython is a C binary and mpi4py is a binding
• You will likely get core files and mangled stack traces
• Use ld to check which MPI mpi4py is linked against
– mpi4py.get_config() will show you the contents of mpi.cfg used at build time and is

generally of limited utility
• Ensure Python, mpi4py, and your code are available on all nodes
• Ensure libraries and paths to files are correct in your scripts
• Try running with a single rank
• Rebuild binary modules with debugging symbols
• The default error handler is MPI.ERRORS_RETURN which allows the use of Python exception

handling, but can allow for silent death in C/C++/Fortan MPI code.
– Use MPI.{Comm|Win|File}.Set_errhandler() to set MPI.ERRORS_ARE_FATAL on any

communicator, memory window, or file you pass into C/C++/Fortan MPI code.
– Use MPI.{Comm|Win|File}.Get_errhandler() to check the error handler on any communicator,

memory window, or file passed from C/C++/Fortan MPI code.

51

Argonne Leadership Computing Facility52

Hands-on 2

Notes:

o We have a Theta reservation for use in this training, the
queue is training

o Examples assume exactly 8 nodes unless specified
o Ask questions if you get confused or something breaks

We’ll create a simple submission script and run a few
programs using mpi4py.

Argonne Leadership Computing Facility53

Hands-on Exercise 2: Using mpi4py

Instructions:

1. Check out the examples repo:
git clone https://github.com/wscullin/ecp_python_tutorial.git

2. Change into the directory ecp_python_tutorial

3. Create a script submit.sh using your preferred environment

4. Submit qsub –A yourproject ./submit.sh

53

Argonne Leadership Computing Facility54

Hands-on Exercise 2: Using mpi4py (part 2)
Instructions:

5. Output should look like:

54

Argonne Leadership Computing Facility55

Hands-on Exercise 2: Using mpi4py
6. Why wasn’t our output in order?
7. How might we scatter a dictionary?

8. Change to the directory pi
cd ecp_python_tutorial/pi

9. Run builtins_mpi_pi.py on 1, 8, and 16 ranks:
aprun -n 1 -N 1 python builtins_mpi_pi.py
aprun -n 8 -N 1 python builtins_mpi_pi.py
aprun -n 16 -N 2 python builtins_mpi_pi.py

10. Run threads_pi.py with 1, 8, and 16 threads with the same sample count:
./threads_pi.py 12000000 1
./threads_pi.py 12000000 8
./threads_pi.py 12000000 16

11. What does this tell us about native Python threads?

55

1. environment

Argonne Leadership Computing Facility56

Enumerated admonishments
• Benchmark and profile as you develop

• Control your environment

• Ask if you can do an operation with NumPy or SciPy

• Watch your data types – use NumPy datatypes

• Never mix forking and threading – ie: Python multiprocessing

• Avoid threading in Python – use threads in compiled modules

• Check the build configurations of your important Python modules

• Beware of thread affinity:

aprun -n … -N … –e KMP_AFFINITY=none -d … -j …
• Watch startup times carefully

• Search before you write code – someone else has likely already implemented

the solution you seek

• On Cray systems, you’ll need the -b flag to aprun with any sort of

environment manager

Argonne Leadership Computing Facility57

Developing Your Own Bindings and Compiled
Modules
While not an exhaustive, common options for using pre-compiled, vectorized,
threaded, GIL-free code for speed from Python include:

Cython – create C code from Python or a Python-like language
F2PY – wrap Fortran code
PyBind11 – “seamless operability between C++11 and Python”
swig – generate bindings for just about anything
Boost.Python – “seamless operability between C++ and Python”
ctypes – built-in Python FFI for interfacing C an option of last resort
Writing bindings in C/C++ http://dan.iel.fm/posts/python-c-extensions/

57

http://dan.iel.fm/posts/python-c-extensions/

Argonne Leadership Computing Facility58

Developing Your Own Modules: Cython

Cython is a meant to make writing C extensions easy
Naive usage can offer x12 speedups
Builds on Python syntax
Translates .pyx files to C which compiles
Provides interfaces for using functionality from OpenMP, CPython, libc, libc++,
NumPy, and more
Works best when you can statically type variables
Lets you turn off the GIL
Provides annotations to guide development

58

Argonne Leadership Computing Facility59

Developing Your Own Modules: Cython
Using cython -a ${sourcefile}.{pyx,py}, we can get guidance on where a
module built with Cython would have to interact with CPython and lose performance:

59

Argonne Leadership Computing Facility60

Developing Your Own Modules: f2py
60

f2py comes with NumPy and can be used to rapidly generate wrappers for Fortran code

Argonne Leadership Computing Facility61

Other Tools for Performance

There are a handful of projects that seek to improve performance of pure Python
code. Two noteworthy options are:

Numba – a Python JIT
– Sponsored by Continuum (now Anaconda, Inc.)
– Can target CPUs and GPUs
– Relies on decorators

PyPy – an alternative to CPython
– Not yet 100% compatible with CPython and all modules
– No code changes required

61

Argonne Leadership Computing Facility62

Hands-on Cross-Compiling on Cray XC40s with pip

virualenv --python=python2.7 "${VENV_NAME}"
source "${VENV_NAME}/bin/activate"

If pip is badly out of date, the TLS certificates may not be trusted.
pip install --trusted-host pypi.python.org --upgrade pip

Set envvars needed to guide pip for cross-compiling and instruct it to build from source
CC=cc MPICC=cc pip install -v --no-binary :all: mpi4py

Set envvars needed for pip to use external dependencies. See package documentation.
HDF5_DIR="${CRAY_HDF5_DIR}/${PE_ENV}/${GNU_VERSION%.*}"
CC=cc HDF5_MPI="ON" HDF5_DIR="${HDF5_DIR}" pip install -v --no-binary :all: h5py
deactivate "${VENV_NAME}"

Argonne Leadership Computing Facility63

Questions?

See also:

ECP Python Tutorial:
https://github.com/wscullin/ecp_python_tutorial

by William Scullin (ALCF), Matt Belhorn (OLCF), and Rollin Thomas (NERSC)

Intel Python Distribution:
http://software.intel.com/en-us/distribution-for-python

https://github.com/wscullin/ecp_python_tutorial
http://software.intel.com/en-us/distribution-for-python

